Essays on the Theory of Elliptic Hypergeometric Functions
نویسنده
چکیده
We give a brief review of the main results of the theory of elliptic hypergeometric functions — a new class of special functions of mathematical physics. We prove the most general univariate exact integration formula generalizing Euler’s beta integral, which is called the elliptic beta integral. An elliptic analogue of the Gauss hypergeometric function is constructed together with the elliptic hypergeometric equation for it. Biorthogonality relations for this function and its particular subcases are described. We list known elliptic beta integrals on root systems and consider symmetry transformations for the corresponding elliptic hypergeometric functions of the higher order.
منابع مشابه
Classical Elliptic Hypergeometric Functions and Their Applications
General theory of elliptic hypergeometric series and integrals is outlined. Main attention is paid to the examples obeying properties of the “classical” special functions. In particular, an elliptic analogue of the Gauss hypergeometric function and some of its properties are described. Present review is based on author’s habilitation thesis [Spi7] containing a more detailed account of the subject.
متن کاملA Noncommutative Weight-dependent Generalization of the Binomial Theorem
A weight-dependent generalization of the binomial theorem for noncommuting variables is presented. This result extends the well-known binomial theorem for q-commuting variables by a generic weight function depending on two integers. For two special cases of the weight function, in both cases restricting it to depend only on a single integer, the noncommutative binomial theorem involves an expan...
متن کاملNew Hypergeometric-like Series for 1/π Arising from Ramanujan’s Theory of Elliptic Functions to Alternative Base 3 Nayandeep Deka Baruah and Narayan Nayak
By using certain representations for Eisenstein series, we find new hypergeometric-like series for 1/π2 arising from Ramanujan’s theory of elliptic functions to alternative base 3.
متن کاملElliptic hypergeometric Laurent biorthogonal polynomials with a dense point spectrum on the unit circle
We construct new elliptic solutions of the qd-algorithm. These solutions can be interpreted as elliptic solutions of the discrete-time Toda chain as well. As a by-product, we obtain new explicit orthogonal and biorthogonal polynomials in terms of the elliptic hypergeometric function 3G2(z). Their recurrence coefficients are expressed in terms of the elliptic functions. 1991 Mathematics Subject ...
متن کاملElliptic hypergeometric functions
Introduction. The wonderful book by Andrews, Askey, and Roy [2] is mainly devoted to special functions of hypergeometric type – to the plain and q-hypergeometric series and integrals. Shortly before its publication, examples of a third type of such functions, related to elliptic curves, began to appear. A systematic theory of elliptic hypergeometric functions was constructed in 2000-2004 over a...
متن کامل